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Abstract

There are three commonly recognized second-order self-adjoint forms of the neutron transport equation: the even-
parity equations, the odd-parity equations, and the self-adjoint angular flux equations. Because all of these equations
contain second-order spatial derivatives and are self-adjoint for the mono-energetic case, standard continuous finite-
element discretization techniques have proved quite effective when applied to the spatial variables. We first derive analogs
of these equations for the case of time-dependent radiative transfer. The primary unknowns for these equations are
functions of the angular intensity rather than the angular flux, hence the analog of the self-adjoint angular flux equation
is referred to as the self-adjoint angular intensity equation. Then we describe a general, arbitrary-order, continuous spatial
finite-element approach that is applied to each of the three equations in conjunction with backward-Euler differencing in
time. We refer to it as the ‘‘standard’’ technique. We also introduce an alternative spatial discretization scheme for the self-
adjoint angular intensity equation that requires far fewer unknowns than the standard method, but appears to give com-
parable accuracy. Computational results are given that demonstrate the validity of both of these discretization schemes.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

There are three basic second-order self-adjoint forms of the neutron transport equation: the even-parity
(EP) equation, the odd-parity (OP) equation, and the self-adjoint angular flux (SAAF) equation [1,2]. The
EP and OP equations have been numerically solved within the neutron transport community for decades
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[3–8]. These equations have been traditionally used to solve only the steady-state neutron transport equation.
However, they recently have also been used to solve the non-linear radiative transfer equations [9] and the
time-dependent neutron transport equation [10]. Most of the early methods for solving the EP and OP equa-
tions used either finite-element or spherical-harmonic approximations for the angular variables. The use of Sn

angular discretization was first seen in the 1990s [11,12]. The usual strategy for performing time-dependent
calculations is to first discretize the continuum first-order transport equation in time, and then algebraically
manipulate the resulting semi-discrete equation to obtain semi-discrete time-dependent EP and OP equations.
Ackroyd and de Oliveira [13] have recently derived a maximum principle for the time-dependent, first-order
neutron transport equation. This maximum principle can also be used to derive a continuum time-dependent
SAAF equation. However, the authors did not use the principle for this purpose, and made no reference to the
SAAF equation. The EP, OP and SAAF equations have recently been applied to coupled electron–photon
transport [14–16]. This application significantly differs from neutronics and radiative transfer applications
because the small energy transfers associated with electron scattering generally requires special treatment.
In particular, these transfers can be treated either with a special type of ‘‘condensed’’ cross-section approxi-
mation [14,16], or a continuous-slowing-down term [15]. The former is compatible with standard discretiza-
tion and solution techniques for the EP, OP, and SAAF equations, while the latter requires some
generalization of these techniques.

The SAAF equation has only recently been recognized as a valuable alternative to the traditional EP and
OP equations [2]. Analogous forms of these equations can be developed for the thermal radiative transfer
equations. We refer to these as the even-parity (EP), odd-parity (OP), and self-adjoint angular intensity
(SAAI) equations. Since all of these equations are non-linear, they cannot be rigorously self-adjoint. However,
they become self-adjoint for the mono-energetic case when linearized. The numerical advantage of these equa-
tions is that many of the standard spatial discretization and numerical solution techniques normally applied to
the diffusion equation can also be applied to these equations. For instance, when the standard multigroup
energy discretization [1] is applied, the linearized equations for each group will be self-adjoint when coupling
between groups is ignored. The coupling between groups is lagged in the iterative process used to solve these
equations, so an iteration consists of solving an independent second-order self-adjoint equation for each
group. Because of the self-adjoint property, one can expect standard finite-element spatial discretization tech-
niques to produce symmetric positive-definite coefficient matrices for each group equation. This in turn makes
it possible to use highly developed preconditioned conjugate-gradient methods to solve the iterative equations.
Indeed, this is one of the primary numerical advantages of solving self-adjoint forms of the radiative transfer
equations as opposed to the standard first-order form. The convergence rate of these group iterations can also
be increased significantly using popular diffusion-synthetic acceleration techniques due to these desirable
matrix properties.

The purpose of this paper is to describe a general-order, general-geometry, finite-element technique for spa-
tially discretizing the EP, OP, and SAAI thermal radiation transport equations on unstructured meshes. We
are unaware of any such method being previously defined for these equations, although our method is cer-
tainly analogous in many ways to existing methods for the EP and OP equations for neutron transport. None-
theless, there is one aspect of our method that appears to be unique relative to all previous methods for the EP
and OP transport equations, and this relates to the treatment of the secondary variable. We also give an
alternative general-order spatial finite-element technique that can be applied only to the SAAI equation. This
alternative method has far fewer unknowns than our ‘‘standard’’ method, but it appears to give comparable
accuracy for the test calculations that we considered. Our finite-element techniques are applied in conjunction
with backward-Euler temporal differencing and the discrete-ordinates (Sn) angular discretization. The
methods trivially accommodate Crank–Nicholson temporal differencing and the spherical-harmonics angular
differencing scheme as well.

The remainder of this paper is organized as follows. First, we describe the thermal radiative transfer equa-
tions and apply the backward-Euler temporal differencing scheme to them. Next, we describe our general
finite-element spatial discretization technique for each of the EP, OP, and SAAI equations. An overview of
some of the practical considerations regarding applying the finite-element method to the radiative transfer
equations (e.g. mass matrix lumping and the required spatial quadrature order) is also contained in this
section. A description of the alternative spatial discretization scheme unique to the SAAI equation is
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subsequently provided. A brief overview of the standard techniques used to discretize the remaining angular
and energy variables is next given. A basic linearization technique for dealing with the non-linearities in all of
the equations is then described. Computational results that demonstrate the validity of our discretization
schemes in both one- and two-dimensional Cartesian geometry are given next. Finally, a summary of results
and conclusions is provided. A detailed formulation of the boundary conditions for the self-adjoint forms of
the radiative transport equations is provided in Appendix A.

2. The standard first-order radiative transfer equations

Using the standard first-order form of the transport equation, the radiative transfer equations can be
expressed as follows:
1

c
ow
ot

þ ~X � ~rwþ rtw ¼ 1

4p
rs/þ raB; ð1Þ
and
Cv
oT
ot

¼
Z 1

0

rað/� 4pBÞdE; ð2Þ
where t denotes time, c denotes the speed of light (length/time), ~X denotes the angular or directional variable
(a point on the unit sphere), the gradient is taken with respect to the spatial variables ðx; y; zÞ �~r, E denotes
the radiation energy (energy), wðt;~r; ~X;EÞ denotes the radiation intensity (energy/area–time–energy–
steradian), T ðt;~rÞ denotes the material temperature (keV), rtð~r;E; T Þ denotes the macroscopic total cross-
section (length�1), the macroscopic scattering cross-section is denoted by rsð~r;E; T Þ (length�1), the
macroscopic absorption cross-section is denoted by rað~r;E; T Þ (length�1), the specific heat capacity (energy/
volume–temperature) is denoted by Cvð~r;E; T Þ, / denotes the angle-integrated intensity,
/ ¼
Z
4p
wdX; ð3Þ
and B(E,T) (energy/area–time–energy–steradians) denotes the Planck function,
B ¼ 2E3

h3c2
½expðE=kT Þ � 1��1

; ð4Þ
where h is Planck�s constant and k is Boltzmann�s constant. We difference Eqs. (1) and (2) in time only using
the backward-Euler technique
1

cDt
ðw� wnÞ þ ~X � ~rwþ rtw ¼ 1

4p
rs/þ raB; ð5Þ
and
Cv

Dt
ðT � T nÞ ¼

Z 1

0

rað/� 4pBÞdE; ð6Þ
where n is the time index, Dt is the time step, and every quantity not carrying an index of n is implicitly as-
sumed to carry an index of n + 1. Thus wn and Tn represent the values of the intensity and temperature, respec-
tively, at the beginning of the time step and all of the other time-dependent quantities are evaluated at the end
of the time step.

3. Self-adjoint forms of the radiative transfer equations

In this section, we derive the various self-adjoint forms of the radiative transfer equations from the standard
first-order form. The even-parity and odd-parity intensities are, respectively, defined in terms of the intensity
as follows:
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wþ ¼ 1

2
½wð~XÞ þ wð�~XÞ�; ð7Þ

w� ¼ 1

2
½wð~XÞ � wð�~XÞ�. ð8Þ
The inverse relationship is
w ¼ wþ þ w�. ð9Þ
Note that the angle-integrated intensity is also equal to the angle-integrated even-parity intensity
/ ¼
Z
4p
wþ dX. ð10Þ
Substituting �~X for ~X in Eq. (5), adding the resulting equation to Eq. (5), and dividing by two, we obtain a
first-order equation for the even-parity intensity
1

cDt
ðwþ � wþ;nÞ þ ~X � ~rw� þ rtw

þ ¼ 1

4p
rs/þ raB. ð11Þ
Substituting �~X for ~X in Eq. (5), subtracting the resulting equation from Eq. (5), and dividing by two, we
obtain a first-order equation for the odd-parity intensity
1

cDt
ðw� � w�;nÞ þ ~X � ~rwþ þ rtw

� ¼ 0. ð12Þ
Solving Eq. (12) for w�, we get
w� ¼ � 1

rs

~X � ~rwþ þ Q�

rs
; ð13Þ
where
s ¼ 1

cDt
; ð14Þ

rs ¼ rt þ s; ð15Þ
Q� ¼ sw�;n. ð16Þ
Substituting from Eq. (13) into Eq. (11), we obtain a second-order equation for the even-parity intensity:
�~X � ~r 1

rs

~X � ~rwþ þ rsw
þ ¼ Qþ � ~X � ~rQ�

rs
; ð17Þ
where
Qþ ¼ 1

4p
rs/þ raBþ swþ;n. ð18Þ
Eq. (17) is the even-parity equation that we spatially discretize via the finite-element method. When numeri-
cally solving this equation, the even-parity intensity is referred to as the primary unknown, and the odd-parity
intensity is referred to as the secondary unknown. Since wþð~XÞ ¼ wþð�~XÞ, the angular domain for this equa-
tion is half that of the standard first-order form of the transport equation; e.g. half the unit sphere in 3-D cal-
culations. Any contiguous half of the unit sphere may be chosen as the domain. Solving Eq. (11) for w+, we get
wþ ¼ � 1

rs

~X � ~rw� þ Qþ

rs
. ð19Þ
Substituting from Eq. (19) into Eq. (12), we obtain a second-order equation for the odd-parity intensity
�~X � ~r 1

rs

~X � ~rw� þ rsw
� ¼ Q� � ~X � ~rQþ

rs
. ð20Þ
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Eq. (20) is the odd-parity equation that we spatially discretize via the finite-element method. When numeri-
cally solving this equation, the odd-parity intensity is referred to as the primary unknown, and the even-parity
intensity is referred to as the secondary unknown. Since w�ð~XÞ ¼ �w�ð�~XÞ, the angular domain for this equa-
tion is half that of the standard first-order form of the transport equation.

Solving Eq. (5) for w, we get
w ¼ � 1

rs

~X � ~rwþ Q
rs

; ð21Þ
where
Q ¼ 1

4p
rs/þ raBþ swn. ð22Þ
Substituting from Eq. (21) into the gradient term in Eq. (5), we obtain a second-order equation for the angular
intensity
�~X � ~r 1

rs

~X � ~rwþ rsw ¼ Q� ~X � ~r Q
rs

. ð23Þ
Eq. (23) is the SAAI equation that we spatially discretize via the finite-element method. When numerically
solving this equation, both the primary and secondary variables represent the angular intensity, but they
are represented in different ways. The angular domain for this equation is identical to that of the standard
first-order form of the transport equation.

There is an equivalent alternative to the form of the SAAI equation given in Eq. (23). In particular, let us
begin its derivation by defining the scattering operator, S, as follows:
Sw ¼ 1

4p
rs/. ð24Þ
Then Eq. (21) can be re-expressed as follows:
w ¼ �ðrs � SÞ�1~X � ~rwþ ðrs � SÞ�1
Q; ð25Þ
where
Q ¼ raBþ swn. ð26Þ

Substituting from Eq. (25) into the gradient term in Eq. (5), we obtain the alternate form of the SAAI equation
�~X � ~rðrs � SÞ�1~X � ~rwþ rsw ¼ Swþ Q� ~X � ~rðrs � SÞ�1
Q. ð27Þ
Eq. (23) is usually used with Sn angular discretization, while Eq. (27) is usually used with Pn angular discret-
ization. This is related to differences in the iterative solution techniques used for these methods. Our ‘‘stan-
dard’’ finite-element discretization technique has the desirable property that it yields the same numerical
solution for both equations given a common angular discretization, i.e., the Sn solution will be the same
for both equations and the Pn solution will be the same for both equations. This is not so for our alternative
SAAI discretization technique.

4. The finite-element method

In this section we describe our finite-element spatial discretization technique. We first review some of the
basic concepts and terms used in the finite-element method [17]. The computational grid is composed of cells
or elements. For instance, 3-D finite-element grids are usually composed of arbitrary combinations of hexa-
hedra and degenerate hexahedra (wedges, pyramids, and tetrahedra). Each cell has a global index, k, that
takes on a value from 1 to K; a volume, Vk; an outer surface, dVk; and a set of vertices with local indices,
i = 1, Pk. Each vertex in the grid also has a global index, g, that takes on a value from 1 to G. The outer surface
of cell k is the union of the surfaces associated with its faces, i.e.,
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dV k ¼
[F k

f¼1

dV k;f ; ð28Þ
where f is a local face index. Each face that lies on the outer boundary of the grid also has a global index, d,
where d takes on a value from 1 to D.

Each cell is associated with a set of local basis functions, fck;ið~rÞg
Pk
i¼1, which are used to represent the spatial

dependence of the ‘‘primary’’ variable within the cell. These local basis functions are identically zero outside of
the cell k, and they satisfy
ck;ið~rk;jÞ ¼ di;j; ð29Þ
where~rk;j denotes the coordinate vector for the vertex with local coordinate j in cell k, and the delta function
exhibits the properties:
di;j ¼
1 if i ¼ j;

0; otherwise.

�
ð30Þ
Thus, these are interpolatory basis functions with interpolation points at the cell vertices. This means that the
expansion coefficients for the solutions are just the solution values at the vertices; i.e., an arbitrary function,
hð~rÞ, is locally approximated within Vk as follows:
~hð~rÞ ¼
XPk

i¼1

hk;ick;ið~rÞ; ~r 2 V k; ð31Þ
where
hk;i ¼ hð~rk;iÞ. ð32Þ

The global approximation for an arbitrary function, hð~rÞ, can be expressed in terms of the local basis functions
as follows:
~hð~rÞ ¼
XG
g

hg
XNg

n¼1

ck;ið~rÞ; ð33Þ
where
hg ¼ hð~rgÞ; ð34Þ

Ng denotes the number of cells subtending vertex g; k ” k(n,g) denotes the index of the nth cell subtending ver-
tex g; i”i(n,g) is the local index of the vertex g in the nth cell subtending vertex g; and~rg denotes the coordinate
vector for vertex g. It is useful to define global vertex basis functions in addition to the local basis functions.
Specifically, the global basis function for vertex g is defined as follows:
bgð~rÞ ¼
XNg

n¼1

ck;ið~rÞ. ð35Þ
Using Eq. (35), we can re-express Eq. (33) in a more compact form
~hð~rÞ ¼
XG
g

hgbgð~rÞ. ð36Þ
4.1. Spatial discretization of the even-parity equation

Our discretization of the even-parity equation begins with Eqs. (6), (11), and (13). The even-parity intensity
is the primary unknown. Thus, the discrete even-parity intensities are located on the vertices and expanded in
terms of the basis functions, i.e.,
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~w
þð~rÞ ¼

XG
g

wþ
g bgð~rÞ. ð37Þ
The discrete material temperatures also exist at the vertices and are similarly expanded in the basis functions
eT ð~rÞ ¼ XG
g

T gbgð~rÞ. ð38Þ
In principle, defining the spatial dependence of the temperature also defines the spatial dependence of the
Planckian, B(T). However, this approach is problematic because the Planckian is a non-linear function of tem-
perature. Instead, we define discrete values of the Planckian at the vertices; i.e.,
Bg ¼ BðT gÞ; g ¼ 1;G ð39Þ

and expand the Planckian in the basis functions
eBð~rÞ ¼ XG
g

Bgbgð~rÞ. ð40Þ
To obtain the equation for wþ
g , we first substitute from Eqs. (14), (15), and (18) into Eq. (11) to obtain
~X � ~rw� þ rsw
þ ¼ Qþ. ð41Þ
Next we multiply Eq. (41) by bg, and analytically integrate over the entire grid
Z
V
bg½~X � ~rw� þ rsw

þ � Qþ�dV ¼ 0; ð42Þ
where V denotes the entire grid volume. Next we apply Green�s Theorem and integrate the gradient term in
Eq. (42) by parts to obtain
I

dV
bgw

�~X �~ndA�
Z
V
½w�~X � ~rbg�dV þ

Z
V
bg½rsw

þ � Qþ�dV ¼ 0; ð43Þ
where dV denotes the outer boundary surface of the entire grid and~n is the outward-directed surface normal.
Although w� appears in the surface integral in Eq. (43), boundary conditions enable us to express w� in terms
of w+ on the surface of the grid. For instance, let us assume a vacuum boundary condition for the purpose of
demonstration. More general conditions are discussed in Appendix A, where it shown that for a vacuum
boundary condition,
w�~X �~n ¼ wþj~X �~nj on dV for all ~X. ð44Þ

Substituting from Eq. (44) into Eq. (43), we get
I

dV
bgw

þj~X �~njdA�
Z
V
½w�~X � ~rbg�dV þ

Z
V
bg½rsw

þ � Qþ�dV ¼ 0. ð45Þ
Next, we assume the vertex basis function approximations for the even-parity intensity and the Planckian gi-
ven in Eqs. (37) and (40), respectively, and insert them into Eq. (45)
I

dV
bg

~w
þj~X �~njdA�

Z
V
½w�~X � ~rbg�dV þ

Z
V
bg½rs

~w
þ � eQþ�dV ¼ 0; ð46Þ
where eQþ
denotes the approximation to this quantity resulting from the substitutions. We next substitute the

basis function approximation for w+ into Eq. (13)
w� ¼ � 1

rs

~X � ~r~w
þ þ Q�

rs
. ð47Þ
If Q� were zero, we could simply substitute from Eq. (47) into Eq. (46). However, Q� depends upon values of
w� from the previous time step. Thus we must assign a specific functional dependence to w�. Most existing
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finite-element methods for the EP and OP neutronics equations were developed only for steady-state calcula-
tions. Furthermore, the techniques for representing the secondary variable are straightforward for mono-
energetic problems, but generally quite complicated for energy-dependent problems [7]. In steady-state
calculations, Q� is identically zero. This means that the steady-state odd-parity intensities are elements of
the space spanned by ~X � ~r operating on the vertex basis functions. Indeed, the existing neutronics methods
compute w� directly from ~X � ~rwþ. This suggests that this ‘‘directional-derivative’’ space should also be used
to represent the odd-parity intensities in time-dependent calculations. If the local basis functions for w+ are
linear over each cell, then the directional- derivative space is constant over each cell and the functional rep-
resentation for w� is simple. However, in the general case we have found it cumbersome to use this direc-
tional-derivative space to represent the odd-parity intensities, particularly since the space itself depends
upon ~X in the general case. For instance, let us consider the tri-linear space of polynomials used to represent
the even-parity intensity on hexahedra. Let f be any element of this space. Then f can be represented as
follows:
f ðx; y; zÞ ¼ c1 þ c2xþ c3y þ c4zþ c5xy þ c6yzþ c7xzþ c8xyz; ð48Þ

where c1 through c8 are the coefficients associated with the eight linearly independent basis functions that we
have used to define this space. Applying the operator ~X � ~r to f, we get
~X � ~rf ¼ c2Xx þ c3Xy þ c4Xz þ c5ðXxy þ XyxÞ þ c6ðXyzþ XzyÞ þ c7ðXxzþ XzxÞ þ c8ðXxyzþ Xyxzþ XzxyÞ;
ð49Þ
where Xx, Xy, and Xz, are the x, y, and z components of ~X, respectively. Note that there are seven linearly-
independent basis functions associated with the directional-derivative space, and further that each basis func-
tion is dependent upon ~X. While one could certainly use this space to represent w�, we have chosen to use an
alternative approach that is much simpler, but no less accurate. Specifically, we use spatial quadrature to per-
form the volumetric integral containing w� in Eq. (46), and collocate Eq. (47) at the quadrature points. In
particular, let f~dk;j;wk;jgDk

j¼1 denote the set of volumetric quadrature points and weights for cell k, then Eq.
(47) is discretized as follows:
w�
k;j ¼ � 1

rs

~X � ð~r~w
þÞk;j þ

Q�
k;j

rs
; ð50Þ
where w�
k;j, ð~r~w

þÞk;j, and Q�
k;j denote values for w

�, ~r~w
þ
, and Q� at quadrature point j in cell k. Thus, we see

that the odd-parity intensity and its related quantities (Q�) are purely discrete and exist at the volumetric
quadrature points. Using quadrature to perform the volumetric integral containing w� in Eq. (46) and substi-
tuting from Eq. (50) into that equation, we get
I

dV
bg

~w
þj~X �~njdA�

XNg

n¼1

XDk

j¼1

� 1

rs

~X � ð~r~w
þÞk;j þ

Q�
k;j

rs

� �
~X � ð~rck;iÞk;j

� �
wk;j þ

Z
V
bg½rs

~w
þ � eQþ�dV ¼ 0.

ð51Þ

We next derive the equation for the discrete temperature unknown at vertex g. First, we substitute the basis
functions representations for w+, T, and B, given in Eqs. (37), (38), and (40), respectively, into Eq. (6),
Cv

Dt
ðeT � eT nÞ ¼

Z 1

0

rað~/� 4peBÞdE. ð52Þ
Next, we multiply Eq. (52) by the basis function for vertex g and then integrate over the spatial domain to get
Z
V
bg

Cv

Dt
ðeT � eT nÞ �

Z 1

0

rað~/� 4peBÞdE� �
¼ 0. ð53Þ
Because there are no spatial derivatives in Eq. (53), it follows that this equation must hold pointwise at each
vertex
Cv

Dt
ðT g � T n

gÞ ¼
Z 1

0

rað/g � 4pBðT gÞÞdE. ð54Þ



20 J.E. Morel et al. / Journal of Computational Physics 214 (2006) 12–40
This concludes the derivation of the even-parity finite-element equations. To summarize, there are three fun-
damental unknowns, the odd-parity intensities that exist at the volumetric quadrature points, the even-parity
intensities that exist at the vertices, and the material temperatures that exist at the vertices. The equation for
w�

k;j, the odd-parity angular intensity at quadrature point j in cell k, is given in Eq. (50). The equation for wþ
g ,

the even-parity angular intensity at vertex g, is given in Eq. (51). The equation for Tg, the material temperature
at vertex g, is given in Eq. (54).

4.2. Spatial discretization of the odd-parity equation

The basic approach used to discretize the even-parity equations is largely used to discretize the odd-parity
equations as well, but the even-parity and odd-parity equations change roles as primary and secondary vari-
ables, and hence, exchange location. More specifically, the odd-parity intensities are located at the vertices and
the even-parity intensities are located at the quadrature points. For instance, collocating Eq. (19) at quadra-
ture point j of element k, we obtain the even-parity analog of Eq. (50)
wþ
k;j ¼ � 1

rs

~X � ð~r~w
�Þk;j þ

Qþ
k;j

rs
. ð55Þ
The temperatures must be co-located with the even-parity intensities, so they are also located at the quadra-
ture points. Collocating Eq. (6) at quadrature point j in cell k yields
Cv

Dt
ðT k;j � T n

k;jÞ ¼
Z 1

0

rað/k;j � 4pBðT k;jÞÞdE. ð56Þ
Using the vertex basis functions to represent the odd-parity intensities in Eq. (20), and proceeding in analogy
with the discretization steps for Eq. (17), we obtain the odd-parity analog to Eq. (51)
I

dV
bg

~w
�j~X �~njdA�

XNg

n¼1

XDk

j¼1

� 1

rs

~X � ð~r~w
�Þk;j þ

Qþ
k;j

rs

" #
~X � ð~rck;iÞk;j

( )
wk;j þ

Z
V
bg½rs

~w
� � eQ��dV ¼ 0.

ð57Þ
This completes the derivation of the odd-parity finite-element equations, which consist of Eqs. (55)–(57).

4.3. Standard spatial discretization of the SAAI equation

We first derive the standard discretization scheme for the SAAI equation. It can be shown that the sum of
the analytic even-parity and odd-parity equations is the self-adjoint angular intensity equation [2]. This follows
largely from Eq. (9). For this reason, the finite-element approach used to discretize the even-parity and odd-
parity equations can be directly applied to the SAAI equation simply by summing the discrete even-parity and
odd-parity equations. There are useful alternatives to the boundary treatments obtained in this way that were
applied to the SAAF equation in [2]. The merits of these alternative conditions are discussed in Appendix A. It
follows from the summation principle that the SAAI discretization has angular intensity and temperature
unknowns at both the vertices and the quadrature points. The angular intensities at the vertices are considered
the primary unknowns and the angular intensities at the quadrature points are considered the secondary
unknowns.

Summing Eqs. (50) and (55), we obtain the equation for the angular intensity at quadrature point j in cell k
wk;j ¼ � 1

rs

~X � ð~r~wÞk;j þ
Qk;j

rs
. ð58Þ
The equation for the temperature at quadrature point j in cell k is given by Eq. (56) (the only temperature
equation for the odd-parity equations). The equation for the temperature at vertex g is given by Eq. (54)
(the only temperature equation for the even-parity equations). The equation for the angular intensity at vertex
g is obtained by adding Eqs. (51) and (57)
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I
dV
bg

~wj~X �~njdA�
XNg

n¼1

XDk

j¼1

� 1

rs

~X � ð~r~wÞk;j þ
Qk;j

rs

� �
~X � ð~rck;iÞk;j

� �
wk;j þ

Z
V
bg½rs

~w� eQ�dV ¼ 0. ð59Þ
This completes the derivation of the standard finite-element discretization for the SAAI equation, which con-
sists of Eqs. (54), (56), (58), and (59).

It is not difficult to show that solving the SAAI equation with the standard discretization is completely
equivalent to solving both the even-parity and odd-parity equations, provided that the SAAI boundary con-
ditions are consistent with both the even-parity and odd-parity boundary conditions. These consistent SAAI
conditions are referred to as the ‘‘parity-equivalent’’ conditions in Appendix A. The solutions are equivalent in
the sense that SAAI solution is simply the sum of the even-parity and odd-parity solutions.

4.4. Averaging of even-parity and odd-parity solutions

It is well-known within the neutron transport community that averaging finite-element even-parity solu-
tions with odd-parity solutions can result in very accurate solutions under a variety of conditions [18]. For
instance, it has been shown [19,20] that amazingly accurate scalar flux solutions can be obtained in highly dif-
fusive 1-D steady-state problems with unresolved spatial boundary layers by averaging vertex-centered scalar
fluxes from an even-parity calculation with cell-centered scalar fluxes from an odd-parity calculation. It has
also been shown that the same solutions can be obtained by averaging vertex-centered and cell-centered scalar
fluxes obtained from a parity-equivalent SAAF calculation [21]. Such properties might be quite valuable in
radiative transfer calculations since adequately resolving boundary layers can sometimes be prohibitively
expensive in such calculations. However, it is not obvious that properties which hold for steady-state self-
adjoint neutron transport calculations necessarily hold for time-dependent non-linear self-adjoint radiative
transfer calculations. We later present computational results which indicate that our self-adjoint radiative
transfer discretizations retain these highly desirable properties. These properties are lost with the standard
SAAI discretization when the boundary treatment defined by Eqs. (A.17) and (A.18) (which are given in
Appendix A) is used. In this case, the SAAI solution is no longer parity-equivalent. However, there is evidence
that this more physical boundary condition results in vertex-centered scalar fluxes that are more accurate than
those obtained with the parity-equivalent boundary conditions [2]. Finally, we note that the alternative SAAI
discretization derived in the following section cannot have these averaging properties because it has only ver-
tex-centered unknowns. Thus, it cannot be made equivalent to the even-parity and odd-parity discretizations.

4.5. Spatial quadrature order

To our knowledge, defining the secondary variables at the volumetric quadrature points via collocation is a
unique aspect of our approach. Its advantages are that it is both simple and accurate. For instance, let us con-
sider the even-parity equations without loss of generality. Ideally, one would like to solve Eq. (47) exactly
given ~X � ~r~w

þ
. Under our approach, Eq. (47) is exactly solved at the quadrature points. Thus any additional

approximation associated with our approach must arise from the use of quadrature to evaluate the integrals in
Eq. (46). However, there is actually no additional approximation because the quadratures we use are exact
whenever the integrals in Eq. (46) can be evaluated analytically, and quadrature is always used in standard
finite-element methods if the integrals cannot be evaluated analytically [17]. The only disadvantage of our
approach is that the secondary variables generally require much more computer storage than the primary vari-
ables. For instance, on an orthogonal hexahedral mesh with tri-linear basis functions, there are eight times
more secondary variables than primary variables using an eight-point Gauss quadrature.

It is clearly desirable to minimize the order of the volumetric quadrature while maintaining the maximum
order accuracy of the solution. The issue of optimal quadrature order is discussed in [17]. For instance, using a
linear trial-space on tetrahedra, one can obtain second-order accuracy using a one-point volumetric quadra-
ture and one-point surface quadrature. However, all of the integrals can be exactly evaluated using a one-point
volumetric quadrature for the integrals containing basis function gradients, a four-point quadrature for the
removal and source integrals, and a three-point quadrature for the surface integrals. Since the intensity
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unknowns at the volumetric quadrature points are associated only with the quadrature set used for the gra-
dient integrals, this approach results in exact integration with only one intensity unknown per tetrahedron. In
contrast, using a tri-linear trial space on general hexahedra, one cannot obtain exact integration for all terms
regardless of the quadrature order used. However, one can obtain second-order accuracy of the solution using
an eight-point volumetric Gauss quadrature and a four-point Gauss surface quadrature. The removal, source,
and surface integrals will be exact with these quadratures, but the gradient integrals will not be. These are the
types of issues that should be considered when choosing a quadrature order.

4.6. Finite-element lumping

Our experience with radiative transfer problems in the stellar regime indicates that finite-element lumping
[17] of the removal and source terms is often desirable for increased robustness. The traditional concept of
lumping only applies to the removal and source terms (analogous to so-called mass matrix lumping [17] in
structural finite-elements). It is also desirable to lump the gradient term, but this remains a research topic
for unstructured meshes. Hence we only describe removal/source lumping here. The removal and source terms
in Eqs. (51) and (57) are lumped by making the following respective replacements:
Z

V
bg½rs

~w
þ � eQþ�dV ! wþ

g

Z
V
rsbg dV � Qþ

g

Z
V
bg dV ; ð60ÞZ

V
bg½rs

~w
� � eQ��dV ! w�

g

Z
V
rsbg dV � Q�

g

Z
V
bg dV . ð61Þ
The removal and source terms in our standard and alternative differenced SAAI equations, Eqs. (59) and (71),
respectively, are lumped by making the following replacement:
Z

V
bg½rs

~w� eQ�dV ! wg

Z
V
rsbg dV � Qg

Z
V
bg dV . ð62Þ
4.7. Unstructured mesh basis functions

The basis functions for non-orthogonal elements are constructed in a rather special manner. In particu-
lar, the basis functions are defined with respect a ‘‘local’’ coordinate system rather than the global or phys-
ical coordinate system used to define the grid. A local coordinate system is used because the finite-element
integrations are generally much easier to express in the local system. Thus all integrations are carried out in
the local system. Furthermore, the integrals for non-orthogonal elements generally cannot be analytically
performed, so a quadrature is usually used to perform them. For simplicity, we have chosen to ignore these
complications in our finite-element equations. However, the fully detailed expressions are easily obtained
from our expressions. For instance, let ~s ¼ ðs1; s2; s3Þ denote the local coordinates, and let ~r ¼ ðr1; r2; r3Þ
denote the global coordinates. The gradient of vertex basis function g at global position ~r is expressed as
follows:
~rrbgð~rÞ ¼ J�1~rsbgð~sÞ; ð63Þ
where J is the Jacobian matrix associated with the mapping from the local to global coordinate system. The
global volume element is given in terms of the local volume element as follows:
dr1 dr2 dr3 ¼ jJjds1 ds2 ds3; ð64Þ
where jJj denotes the determinant of the Jacobian matrix. This implies that a volumetric quadrature weight in
the global system is expressed in terms of the local quadrature weight as follows:
wr ¼ jJjws; ð65Þ

where the Jacobian is evaluated at the quadrature point associated with ws. Similar relationships exist for the
surface integrals. Complete details are given in [17].
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5. Alternative spatial discretization of the SAAI equation

We next derive the alternative finite-element scheme for the SAAI equation. This derivation is begun by
assuming that all of the unknowns exist at the vertices, and representing these unknowns in terms of the vertex
basis functions. Thus, the basis function representations for the material temperature and the Planckian are,
respectively, given by Eqs. (38) and (40), while the representation for the angular intensity is given by
~wð~rÞ ¼
XG
g

wgbgð~rÞ. ð66Þ
Substituting the angular intensity and Planckian representations into the SAAI equation, Eq. (23), we obtain
~X � ~r � 1

rs

~X � ~r~wþ
eQ
rs

" #
þ rs

~w� eQ ¼ 0; ð67Þ
where eQ denotes the approximation to this quantity resulting from the substitutions. Next, we multiply Eq.
(67) by bg and integrate over the entire spatial domain
Z

V
bg
~X � ~r � 1

rs

~X � ~r~wþ
eQ
rs

" #
dV þ

Z
V
bg½rs

~w� eQ�dV ¼ 0. ð68Þ
Integrating the gradient term in Eq. (68) by parts, we get
I
dV
bg � 1

rs

~X � ~r~wþ
eQ
rs

" #
~X �~ndA�

Z
V

� 1

rs

~X � ~r~wþ
eQ
rs

" #
~X � ~rbg dV þ

Z
V
bg½rs

~w� eQ�dV ¼ 0. ð69Þ
Substituting from Eq. (21) into the surface integral in Eq. (69), we get
I
dV
bg

~w~X �~ndA�
Z
V

� 1

rs

~X � ~r~wþ
eQ
rs

" #
~X � ~rbg dV þ

Z
V
bg½rs

~w� eQ�dV ¼ 0. ð70Þ
The surface integral in Eq. (70) was obtained without any consideration of boundary conditions. For purposes
of demonstration, we impose the vacuum condition and use the same treatment used in Eq. (59)
I

dV
bg

~wj~X �~njdA�
Z
V

� 1

rs

~X � ~r~wþ
eQ
rs

" #
~X � ~rbg dV þ

Z
V
bg½rs

~w� eQ�dV ¼ 0. ð71Þ
More general boundary conditions and alternative boundary treatments are given in Appendix A. This com-
pletes the derivation of the alternative SAAI finite-element equations, which consist of Eqs. (54) and (71).

6. Angular discretization

Since spatial discretization is the focus of this paper, we consider only the Sn [1] angular discretization
method. However, we should note that the Pn, or spherical-harmonic, method is an alternative to the Sn

method that has been traditionally used in conjunction with self-adjoint forms of the transport equation.
These two discretization techniques are complimentary in their strengths and weaknesses. We used the Sn dis-
cretization in this study primarily because it is easier to implement.

The Sn method is most easily characterized as an angular collocation method. The collocation points also
correspond to a set of quadrature directions. This quadrature set is used to calculate the angle-integrated
intensity from the discrete angular intensities. For instance, let f~Xm;W mgMm¼1 denote an angular quadrature
set where ~Xm is the mth direction and Wm is the mth weight. Applying the Sn discretization to the SAAI equa-
tion, Eq. (23), we obtain
� ~Xm � ~r 1

rs

~Xm � ~rwm þ rswm ¼ Qm � ~Xm � ~rQm

rs
; m ¼ 1;M ; ð72Þ
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where
Qm ¼ 1

4p
rs

XM
m0¼1

wm0W k þ raBþ swn
m0 . ð73Þ
One can also obtain Eq. (73) by first applying the Sn angular discretization to the first-order Eqs. (5) and (21),
and then substituting from Eq. (21) into Eq. (5). The standard angularly discretized finite-element SAAI equa-
tions are obtained by applying the Sn angular discretization to Eqs. (58) and (59), and using the Sn expression
for / in Eqs. (54) and (56), i.e.,
/ ¼
XM
m¼1

wþ
mW m. ð74Þ
A standard Sn quadrature set has N directions in 1-D, N(N + 1)/2 directions in 2-D, and N(N + 1) directions
in 3-D. The even-parity and odd-parity fluxes need be defined at only half of the quadrature directions because
of the symmetry of w+ and the anti-symmetry of w� with respect to a change in the sign of ~X.

7. Energy discretization

We use the standard multigroup method [1] to discretize the self-adjoint equations in photon energy. This
approximation is based upon a contiguous set of energy intervals or ‘‘groups’’ that span the energy domain.
Since all of the time-discretized self-adjoint equations are derived from the time-discretized first-order form of
the transport equation, it suffices to give the multigroup discretization for this equation:
1

cDt
ðwq � wn

qÞ þ ~X � ~rwq þ rt;qwq ¼
1

4p
rs;q/q þ ra;qBq; q ¼ 1;Nq; ð75Þ
where q is the energy group index, wq is the angular intensity integrated over group q, /q is the angle-integrated
intensity integrated over group q, Bq is the Planck function integrated over group q, rt,q is the macroscopic
total cross-section averaged over group q, rs,q is the macroscopic scattering cross-section averaged over group
q, and Nq is the total number of energy groups.

8. Solution of the equations

We use Newton�s method to solve the self-adjoint equations, but the contributions from the material
properties are not included in the Jacobian. For instance, let T* denote the latest Newton iterate for
the temperature. Then the linearized equations for the next Newton iteration are obtained by evaluating
the material properties at T* and expanding the Planck function temperature dependence about T* as
follows:
Bnþ1
q ¼ B�

q þ
oB�

q

oT
ðT nþ1 � T �Þ; ð76Þ
where a superscript ‘‘*’’ denotes a quantity evaluated at T*. With the above expansion, the material temper-
ature can be eliminated from the transport equation. In particular, the linearized temporally-differenced first-
order multigroup transport equation can be expressed as follows:
~X � ~rwq þ r�
s;qwq ¼

1

4p
r�
s;q/q þ

1

4p
mvq

XNq

q0¼1

r�
a;q0/q0 þ nq; q ¼ 1;Nq; ð77Þ
where
m ¼
4p

PNq

q¼1r
�
a;q

oB�
q

oT

C�
v

Dt þ 4p
PNq

q¼1r
�
a;q

oB�
q

oT

; ð78Þ
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vq ¼
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a;q

oB�
q

oTPNq

q0¼1r
�
a;q0

oB�
q0

oT

; ð79Þ

nq ¼ r�
a;qB

�
q þ swn

q �
1

4p
mvq 4p

XNq

q0¼1

r�
a;q0B

�
q0 þ C�

vðT � � T nÞ
" #

; ð80Þ
and the material temperature is given by
T nþ1 ¼ T � þ
PNq

q¼1r
�
a;q/q � 4p

PNq

q¼1r
�
a;qB

�
q þ C�

vðT � � T nÞ
C�
v

Dt þ 4p
PNq

q¼1r
�
a;q

oB�
q

oT

. ð81Þ
Eq. (81) is used to calculate the temperatures after the linearized transport equation has been solved.
Our spatial discretizations for the self-adjoint equations can yield negative solutions when stressed. In gen-

eral, such negativities are small, but they can nonetheless cause the solution algorithm to fail when evaluating
the Planck function and the material properties. We attempt to avoid these difficulties by making special def-
initions for the material properties at negative temperatures. For instance, let T* be any positive temperature.
Each material property is defined at �T* simply by evaluating that property at the floor (i.e., initial) problem
temperature Tfloor; e.g. rt(�T*) = rt(Tfloor). The material properties must remain positive to avoid unstable
solutions. The Planck function is defined at �T* by evaluating the Planck function at T* and then multiplying
the resulting value by �1; e.g. B(�T*) = �B(T*). The derivative of the Planck function is analogously defined:
oB
oT ð�T �Þ ¼ � oB

oT ðT
�Þ. Since a negative intensity contributes to a negative time derivative of the temperature, the

Planck function at negative temperatures should similarly contribute to a negative time derivative of the inten-
sity. This implies that the Planck function at negative temperatures should be negative. Using these definitions
for negative temperatures gives us a system of equations that appears to be very well behaved in the presence
of negative intensities and temperatures. It has been our experience that the Newton iterations converge and
suffer only slight degradation in convergence rate with negative intensities and any associated negative tem-
peratures. Nonetheless, we must point out that this scheme is new and has only been used on a limited number
of problems. Although we have not seen it fail, we cannot guarantee that it is unconditionally effective.

The linearized equations associated with each Newton iteration are solved via the standard source-iteration
technique. This iteration is carried out on two nested levels, but for illustrative purposes we initially assume a
single level. The one-level source iteration process for the first-order equation can be represented as follows:
~X � ~rw‘þ1
q þ r�

s;qw
‘þ1
q ¼ 1

4p
r�
s;q/

‘
q þ

1

4p
mvq

XNq

q0¼1

r�
a;q0/

‘
q0 þ nq; q ¼ 1;Nq; ð82Þ
where ‘ is the integration index. We refer to source terms in Eq. (82) containing rs and ra, as the scattering and
implicit emission sources, respectively. The operator on the left side of Eq. (82) consists of an independent
first-order equation for each direction and energy group that corresponds to a block lower-triangular matrix
after spatial discretization. Each block consists of the equations for a single cell. These equations are relatively
easy to solve.

The self-adjoint source iteration equations can be derived directly from Eq. (82). For instance, this results in
the following SAAI source iteration equations:
�~X � ~r 1

r�
s;q

~X � ~rwq þ r�
s;qwq ¼ K‘

q � ~X � ~r
K‘

q

r�
sq

; ð83Þ
where
K‘ ¼ 1

4p
r�
s;q/

‘
q þ

1

4p
mvq

XNq

q0¼1

r�
a;q0/

‘
q0 þ nq. ð84Þ
Note that the operator on the left side of Eq. (83) consists of an independent second-order equation for each
direction and energy. When spatially discretized, each equation corresponds to a sparse symmetric positive-
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definite matrix. Such matrices can generally be efficiently solved using preconditioned conjugate-gradient tech-
niques. Analogous source iteration equations are obtained for the other self-adjoint forms of the transport
equation.

The true source iteration process nests the scattering source iterations within the implicit emission source
iterations. Thus the scattering source iterations are referred to as the inner iterations and the emission source
iterations are referred to as the outer iterations. This is completely analogous to the source iteration process
for neutron transport with the photon scattering and emission sources corresponding to the neutron within-
group scattering and fission sources, respectively [1]. The scattering source iterations can be accelerated using
diffusion-synthetic acceleration (DSA) [12], and the emission iterations can be accelerated using linear multi-
frequency-grey acceleration (LMGA) [22]. A detailed discussion of these schemes is beyond the scope of this
paper.

9. Computational results

This section details the calculations that were performed to test our finite-element spatial discretization
techniques. We consider only the SAAI equation because the standard SAAI discretization is directly related
to those for the even-parity and odd-parity equations. One-dimensional Cartesian geometry research codes
were generated for both the standard and alternative SAAI equations using linear continuous basis functions.
Standard finite-element lumping of the source and removal operators was employed to increase the robustness
of the schemes. Such lumping reduces accuracy, but maintains the order of accuracy of the unlumped scheme.
A two-dimensional, Cartesian geometry, spatially bi-linear continuous code was generated using the alterna-
tive SAAI discretization scheme. The grey (one-group) approximation was applied to the energy variable in all
of our calculations. All of the SAAI calculations were performed using the solution technique described in the
previous section. An Implicit Monte-Carlo (IMC) code was used to provide solutions for comparison with the
SAAI solutions [23,24].

9.1. One-dimensional results

A standard Marshak wave benchmark problem [25] was selected for 1-D testing of our two discretization
schemes for the SAAI equation. This test case consists of an isotropic black-body boundary source at a
temperature of 1 keV impinging upon a slab with a thickness of 0.05 cm and an initial spatially-uniform
temperature of 1 eV. The slab material properties are defined by the temperature-dependent macroscopic
absorption cross-section, a null scattering cross-section, and a constant heat capacity. The macroscopic
absorption cross-section is given by ra = 300/(T3) cm�1 with T in keV. The heat capacity has a value of
0:3 Jks

cm3�keV
ð1 Jks ¼ 109 JÞ. A constant time step size of Dt = 1.25 · 10�6 shakes (1 shake = 10�8 s) was deter-

mined sufficient to achieve a fully time-converged solution based upon preliminary calculations. The Marshak
benchmark problems were run using S2 angular quadrature. The ‘‘parity-equivalent’’ source boundary condi-
tions, defined by Eqs. (A.15) and (A.16) in Appendix A, were used in the SAAI calculations for both discret-
izations. Unless otherwise stated, comparisons between the standard and alternative SAAI discretization are
made in terms of the primary (vertex-centered) solutions.

The first set of calculations that we consider was performed to demonstrate the accuracy of the standard
and alternative SAAI discretizations relative to that of certain established schemes. Solutions for the Marshak
problem were obtained using the standard SAAI discretization (SAAI-S), the alternative SAAI discretization
(SAAI-A), a standard linear discontinuous discretization of the first-order form of the radiative transfer equa-
tion (LD-1ST) [26], and the standard Implicit Monte-Carlo method [23]. The SAAI calculations and the lin-
ear-discontinuous calculations were carried out with 100 uniform spatial cells. The Monte-Carlo calculation
was carried out with only 10 spatial cells to reduce statistical error. These solutions are compared in Fig. 1 at a
time of 0.1 shakes. It can be seen from Fig. 1 that the SAAI-S, SAAI-A, and LD-1ST solutions show excellent
agreement with each other. They also show excellent agreement with the IMC solution except at points near
the wavefront. However, since the IMC calculation was performed with only 10 cells, a proper comparison
requires that the other solutions be averaged over the Monte-Carlo cell containing the wavefront. When this
is done, it is found that the IMC calculation is in good agreement with the other calculations.
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As noted in Section 4.4, it has been demonstrated for the case of 1-D steady-state neutron transport cal-
culations that averaging of the vertex-centered and cell-centered scalar flux solutions from the standard par-
ity-equivalent SAAF discretization yields a significantly improved scalar flux solution [21]. The second set of
calculations that we consider was performed to investigate whether the parity-equivalent SAAI discretization
has an analogous property for the angle-integrated intensity in a 1-D time-dependent non-linear problem. To
obtain a coarse-mesh solution for averaging, the Marshak problem was performed with the standard SAAI
discretization using only 20 spatial cells. The 20-cell (coarse-mesh) solutions are compared with 100-cell
(fine-mesh) solutions at various times in Fig. 2. The vertex-centered angle-integrated intensity distributions,
the cell-centered angle-integrated intensity distributions, and an average of those two distributions are plotted.
It can be seen from Fig. 2 that the averaged distributions show excellent agreement with the fine-mesh distri-
butions at all times, while the vertex distributions are consistently low, and the cell-centered distributions are
consistently high. These results clearly indicate that a much more accurate solution is indeed obtained by aver-
aging the vertex and cell-centered solutions in SAAI calculations with the standard discretization.

The third set of calculations that we consider was performed to confirm the expectation that standard SAAI
discretization is more accurate than the alternative SAAI discretization if one compares the vertex-centered
solutions from each scheme. A comparison of the standard and alternative SAAI radiation temperature dis-
tributions at various times for the Marshak problem are compared in Fig. 3 for the case of 20 spatial cells, and
in Fig. 4 for the case of 50 spatial cells. A similar comparison for the case of 100 cells at 0.1 shakes was pre-
viously illustrated in Fig. 1. It can be seen from these three figures that the alternative SAAI solutions rapidly
converge to those of the standard scheme as the mesh is refined. The former method has half the number of
unknowns as the latter in 1-D calculations, however, resulting in a significant reduction in data storage
requirements. The reduction in unknowns becomes even more significant in 2-D and 3-D and with higher-
order basis sets. For example, the standard discretization scheme for the SAAI equations requires eight times
the storage of the alternative discretization for 3-D hexahedral-mesh calculations. A complete exploration of
the relative efficiency of the two schemes is beyond the scope of this paper. Nonetheless, it is clear that for the
1-D case, the alternative scheme is comparable in accuracy to the standard scheme when the total number of
unknowns is similar for both methods, and one is comparing vertex-centered solutions.
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Fig. 3. Comparison of the standard and alternative SAAI discretizations with 20 spatial cells.
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The fourth set of calculations was performed to demonstrate that the standard SAAI scheme is somewhat
more robust than the alternative SAAI scheme. Toward this end, the Marshak wave problem was modified
slightly by inserting an optically-thin region of width 0.025 cm, with an absorption cross-section of
ra ¼ 0:003

T 3 cm�1 in the center of the slab. This creates a central optically-thin region surrounded by two opti-
cally-thick regions of equal thickness. Each region was meshed with 50 cells. The problem geometry allows the
radiation field to stream through the optically-thin region with very little attenuation and, subsequently,
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reduced material heating. The steady-state material temperature solutions for the standard and alternative
SAAI discretizations in the region of the interfaces are illustrated in Fig. 5. It can be seen from Fig. 5 that
the alternative scheme solution oscillates at the interfaces, while the standard scheme solution does not. Even
if the calculation is performed again using the standard scheme with half as many cells, the solution does not
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Fig. 5. Standard and alternative SAAI temperatures with large material opacity discontinuities.
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oscillate. Thus, we have found one example problem for which the standard scheme is more robust than the
alternative scheme. We have not found any counter-examples.

9.2. Two-dimensional results

The fifth and final set of calculations was performed to demonstrate the effectiveness of our alternative
SAAI discretizations in multi-dimensional geometry. The test problem that we selected is a 2-D Cartesian
geometry version of the 1-D Marshak wave problem discussed in the previous section. The upper half of
the Cartesian problem geometry and the computational mesh are illustrated in Fig. 6. The bottom edge of
the mesh represents the centerline of the problem geometry; the ‘‘inlet’’ of the problem geometry is on the left
side and has coordinates of x = 0.0 cm and 0.0 6 y 6 0.0075 cm; the ‘‘outlet’’ located on the right edge of the
mesh has coordinates of x = 0.05 cm and 0.0 6 y 6 0.0075 cm. An optically-thin region is located adjacent to
the problem centerline and has vertical coordinates of 0.0 6 y 6 0.0025 cm; an optically-thick region occupies
the remaining area located between 0.0025 6 y 6 0.0075 cm. The optically-thick region has material properties
identical to those previously used for the 1-D Marshak wave problem; the temperature-dependent macro-
scopic absorption cross-section is again given by ra = 300/(T3) cm�1 with T in keV, and the constant heat
capacity has a value of 0:3 Jks

cm3�keV
. The material properties for the optically-thin region were simply taken

as a factor of ten lower than these values; the macroscopic absorption cross-section is given by ra = 30/
(T3) cm�1, and the heat capacity has a value of 0:03 Jks

cm3�keV
. The scattering cross-section is everywhere zero.

An isotropic angular intensity with a black-body temperature of 1.0 keV is incident at the problem inlet. This
source intensity is constant along the entire length of the inlet and is constant in time. All points in the prob-
lem have an initial material temperature of 0.001 keV and a corresponding initial black-body radiation inten-
sity. In addition to satisfying a source condition along the inlet, the radiation intensity satisfies a reflective
boundary condition along the bottom face of the mesh, and a vacuum condition at all other boundary points.
The computational mesh has a total of 3300 spatial cells. There are 100 zones of uniform width in x from
x = 0.0 cm to x = 0.0475 cm. There are 10 zones in x between x = 0.0475 cm and x = 0.05 cm that logarith-
mically decrease to a minimum cell width of 10�4 cm. There are 10 zones in y between y = 0.0 cm and
y = 0.0025 cm that logarithmically decrease to a minimum cell width of 10�4 cm. There are 10 zones in y
between y = 0.0025 cm and y = 0.0050 cm that logarithmically increase from minimum cell width of
10�4 cm. Finally, there are 10 zones in y between y = 0.0050 cm and y = 0.0075 cm that logarithmically
decrease to a minimum cell width of 10�4 cm.

We performed S16 calculations for this problem using the alternative SAAI discretization. All of these cal-
culations were performed using parity-equivalent source and vacuum boundary conditions together with the
non-essential reflective boundary condition defined in Eqs. (A.35) and (A.36). To obtain a reference solution, a
calculation for this problem was performed using the standard Implicit Monte-Carlo method [23]. Based upon
preliminary calculations, a fixed time step of Dt = 1 · 10�6 shakes (1 · 10�8 s/shake) was used in all calcula-
tions. It can be seen from Fig. 6 that highly refined mesh spacing is used along the entire interface between the
optically-thin and optically-thick materials. As one would expect, preliminary calculations indicated that such
meshing is necessary to obtain an accurate solution for both the Sn and Monte-Carlo methods. We also elected
0.0 0.05
0.0

0.0025

0.0075

Fig. 6. Two-dimensional Marshak geometry and meshing. Dimensions are in centimeters. The left-bottom corner of the mesh corresponds
to the origin of the Cartesian coordinate system. The x-axis is located along the bottom edge of the geometry, and the y-axis is located
along the left edge of the geometry.
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to apply refined zoning at the vacuum boundaries to minimize negativities that were observed in the SAAI
solution at these interfaces.

Contour plots of the Sn radiation temperature solutions at times of 5 · 10�4, 1 · 10�2, and 2 · 10�2 shakes
are shown in Fig. 7. These plots are provided herein to allow a qualitative assessment of the wave behaviour –
they are not particularly useful for quantitative analysis. We provide a detailed quantitative analysis in
subsequent comparisons to the Monte-Carlo method results. It should be noted that the vertex radiation
temperatures are plotted in the figures since all calculated quantities are vertex-based in our alternative SAAI
spatial discretization scheme. As to be expected, the wave travels faster in the optically-thin region than in the
optically-thick region due to the reduced opacity in this portion of the problem. The highest wave velocity
occurs at the problem centerline, as some of the initial source energy within the optically-thin region is lost
to material heating at the interface with the optically-thick region. The slowest wave speed occurs at the vac-
uum boundary located along the top edge of the mesh, since energy is simply radiated to space at this inter-
face. The retarding influence of the optically-thick region on the wave speed within the optically-thin region
can be verified by comparing the two-dimensional radiation profiles in Fig. 7 with the one-dimensional profiles
that were previously shown for the Marshak wave problem in Figs. 1, 3, and 4 of the proceeding subsection.
The 1-D, time-dependent, temperature distribution plots are provided at slightly different problem times so
again a direct quantitative comparison is not possible, but it can be noted that the 1-D results predict both
a sharper gradient at the wavefront and larger material temperatures than is noted for the optically-thin
regions in the 2-D solutions.

The computed radiation temperature distributions obtained with both our alternative SAAI discretization
scheme and the IMC code are given in Fig. 8 at a time of 0.02 shakes. To allow a direct comparison with cell-
centered IMC results we provided an option within our SAAI code to calculate cell-centered intensities and
temperatures using a simple average. The SAAI cell-centered temperatures are displayed in Fig. 9. We elected
to compare the discrete and stochastic results in the first row of cells adjacent to the centerline, and in the two
rows of cells adjacent to the middle of the optically-thick region which lies along a row of vertices (i.e.,
y = 0.005 cm). Referring to the figure, excellent agreement is obtained for the radiation temperatures predicted
with the two methods. With the exception of the statistical variation inherent in the Monte-Carlo method the
Fig. 7. SAAI radiation temperature profiles at 5 · 10�4, 1 · 10�2, and 2 · 10�2 shakes.
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results are identical along the problem center-line. The radiation temperatures predicted with our alternative
SAAI scheme lead the IMC method along the midpoint of the optically-thick region, although the effect is
quite small. This small discrepancy is eliminated after the wave front has passed, and the two codes predict
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the same equilibrated radiation temperatures. Although not reported herein, we initially performed the 2-D
Marshak wave discrete ordinates calculations using S4 angular quadrature. This low-order quadrature did
not have sufficient angular resolution to transport radiation in a horizontal direction through the problem
geometry. The S4 calculations thus showed our alternative SAAI discretization results lagging those of the
IMC code significantly. This effect was eliminated with the higher-order S16 angular quadrature. This is in
stark contrast to our one-dimensional Marshak wave calculation results where S2 quadrature was found to
be fully adequate. Our two-dimensional Marshak wave problem introduces an additional angular dependence
that is not present in the one-dimensional case.

The cell material temperatures predicted by our SAAI alternative discretization scheme and the Monte-
Carlo technique are provided in Fig. 9. Again, the vertex-based calculated material temperatures were aver-
aged to output a cell-center quantity that can be compared directly with the IMC results. The agreement
between the two codes is actually improved relative to those obtained for the radiation temperatures previ-
ously illustrated in Fig. 8. Some of this noted improvement is due to the IMC material temperature solution
exhibiting significantly less statistical fluctuation. The material temperatures predicted along the problem cen-
ter-line are again virtually identical. Referring to Fig. 9 and comparing the code predictions along the middle
of the optically-thick region, the IMC results lead our SAAI temperatures at the wave front. This is the oppo-
site behaviour of that observed for the radiation temperatures. The IMC code calculates the material temper-
atures in a non-linearly explicit manner, while our SAAI code utilizes Newton iteration to converge the
material temperature value. This fact might influence the very slight discrepancy that is observed in the results.
Both codes predict the same final, equilibrated material temperatures.

10. Conclusions

A general, arbitrary-order, continuous spatial finite-element discretization scheme has been developed for
the self-adjoint forms of the radiative transfer equations: the even-parity equations, the odd-parity equations,
and the self-adjoint angular intensity equations. An alternative spatial discretization scheme unique to the
SAAI equations has also been presented. While we have limited our discussion to the Sn discrete ordinates
method, our scheme is equally applicable to the Pn spherical-harmonics method.

We have computationally tested both our standard and alternative SAAI finite-element spatial discretiza-
tion schemes in one-dimensional Cartesian geometry. The alternative scheme exhibited slightly less robustness
than the standard scheme in a 1-D problem with severely discontinuous material properties, but the alternative
scheme exhibited reasonably good robustness in all the other calculations that were performed. We have devel-
oped a prototype modification to the algorithm to better treat severe material discontinuities that should be
further investigated in the future. As previously discussed, the alternative scheme requires far less memory
than the standard scheme, because the alternative scheme has unknowns only at the vertices, whereas the stan-
dard scheme has unknowns at both the vertices and the spatial quadrature points. If one considers only vertex
solutions, the alternative and standard schemes appear to have comparable accuracy. However, the standard
scheme gives anomalously accurate results when the solution at the vertices is averaged over the cell with the
solution at the spatial quadrature points. Nonetheless, it seems clear that the alternative scheme is useful and
attractive due to its low memory requirements. Much more practical experience with the standard and alter-
native schemes will be required to determine all of their relative advantages and disadvantages for various clas-
ses of problems. In the future, the relative performance of these two schemes with high-order trial spaces
should be investigated because the advantage in memory usage associated with the alternative scheme rapidly
increases with the order of the trial space. Our computational results for the two-dimensional Marshak wave
problem are very encouraging and clearly indicate that our self-adjoint methods are extendable to multi-
dimensional and multi-material problems.

In the process of determining adequate zoning for a wide variety of problems, we have found our lumped
continuous finite-element methods somewhat more sensitive to the spatial meshing than one would expect
based upon experience with such methods in diffusion calculations. We suspect that this degraded robustness
follows from the fact that diffusion solutions are generally quite smooth, while discontinuities in the angular
intensity and/or its derivatives are easily introduced into the transport solution by spatially localized sources
and geometric shadowing. The accuracy of all discretization techniques will be degraded by discontinuities



34 J.E. Morel et al. / Journal of Computational Physics 214 (2006) 12–40
unless they are specifically designed to capture them, but we suspect that continuous finite-element techniques
are particularly sensitive because they cannot capture discontinuities in the solution at cell interfaces. Thus,
one must be particularly cautious when applying the finite-element schemes described in this paper to prob-
lems with strong solution discontinuities. If one is aware of the presence of solution discontinuities, one can
often mitigate their severity by slightly modifying the problem definition. For instance, one can replace spa-
tially discontinuous sources with localized smooth sources. The use of higher-order continuous finite-element
spatial discretizations should be examined in the future to see how robustness is affected. One would generally
expect higher-order methods to be even less robust than lower-order methods, but good results for multi-
dimensional coupled electron–photon transport calculations have been obtained with continuous quadratic
spatial elements [14,16].

Discretizations for second-order operators can be generally expected to be more numerically diffusive than
discretizations for first-order operators. This deficiency is exacerbated in problems that are extremely optically
thin. Furthermore, difficulties can arise in time-dependent problems with solution modes that fail to attenuate
in time or attenuate far too slowly. Such modes are associated with the null space of the steady-state operator,
and arise entirely due to discretization effects. Gesh and Adams [20] discuss such modes in detail for discret-
izations of the odd-parity equation. A useful alternative in near-void calculations might be to first compute the
uncollided intensity component (uncollided from the start of each time step) using a Monte-Carlo or integral
transport technique, and then compute the collided intensity component using a self-adjoint form of the trans-
port equation. We have produced a lengthy report in which self-adjoint forms of the radiative transfer equa-
tions are applied to a wide variety of problems including those with near voids [27]. Regardless of inherent
limitations associated with the solution of self-adjoint forms of the radiative transfer equations, it is clear from
our results that there are many classes of problems for which these equations may be used to obtain accurate
transport solutions. We conclude from our results that self-adjoint forms of radiative transfer equations rep-
resent a useful alternative to traditional first-order forms, and that self-adjoint forms are worthy of further
study.
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Appendix A

The purpose of this appendix is to derive source and reflective boundary conditions for the even-parity,
odd-parity, and SAAI equations with Sn angular discretization. The vacuum condition is a special case of
the source condition. Specifically, a source condition with an incident intensity of zero is equivalent to a vac-
uum condition. Thus, we do not explicitly derive vacuum conditions. Source conditions are straightforward
for all of the equations and are really independent of the angular discretization. Unfortunately, this is not
the case for reflective boundary conditions.

Eqs. (51), (57), (59), and (71), which are associated with the even-parity discretization, the odd-parity dis-
cretization, the standard SAAI discretization, and the alternative SAAI discretization, respectively, are the
only equations that depend upon the boundary conditions. In particular, the surface integral term in each
of these equations has a form particular to the vacuum boundary condition. To facilitate a description of
the various boundary conditions we replace these specific forms with non-specific generic forms. Specifically,
Eq. (51) becomes
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Eq. (57) becomes
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Eq. (59) becomes
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and Eq. (71) becomes
I
dV
bgws

~X �~ndA�
Z
V

� 1

rs

~X � ~r~wþ
eQ
rs

" #
~X � ~rbg dV þ

Z
V
bg½rs

~w� eQ�dV ¼ 0; ðA:4Þ
where w�
s , w

þ
s , and ws denote the odd-parity, even-parity, and self-adjoint angular intensities defined on the

outer boundary of the mesh. We stress that these are to be considered independent unknowns that must be
defined in terms of the trial-space unknowns via the boundary conditions.

A.1. Even-parity source condition

We first consider the source condition for the even-parity equation. Our task is to define a relationship
between the even-parity angular intensity and the odd-parity angular intensity on the source boundary sur-
face, and then use that relationship to define w�

s in Eq. (A.1) in terms of the trial-space representation for
w+. At a vacuum boundary, the angular intensity physically satisfies
wð~XÞ ¼ f ð~XÞ for ~X �~n < 0; ðA:5Þ

where f ð~XÞ is the ‘‘boundary source function’’ that specifies the incoming angular intensity. Adding Eqs. (7)
and (8), we obtain
wð~XÞ ¼ wþð~XÞ þ w�ð~XÞ. ðA:6Þ

Substituting from Eq. (A.6) into Eq. (A.5), we get
wþð~XÞ þ w�ð~XÞ ¼ f ð~XÞ for ~X �~n < 0. ðA:7Þ

Solving Eq. (A.7) for w�, we get
w�ð~XÞ ¼ �wþð~XÞ þ f ð~XÞ for ~X �~n < 0. ðA:8Þ

To obtain a similar relationship for ~X �~n > 0, we note that Eq. (A.5) implies that
wð ~�XÞ ¼ f ð�~XÞ for ~X �~n > 0. ðA:9Þ

Manipulating Eq. (A.9) in analogy with the manipulation of Eq. (A.5), we obtain
w�ð~XÞ ¼ wþð~XÞ � f ð~XÞ for ~X �~n > 0. ðA:10Þ

Eqs. (A.8) and (A.10) constitute the desired relationships. Using them to define w�

s , we obtain:
w�
s ð~XÞ ¼ � ~w

þð~XÞ þ f ð~XÞ for ~X �~n < 0; ðA:11Þ

w�
s ð~XÞ ¼~w

þð~XÞ � f ð~XÞ for ~X �~n > 0; ðA:12Þ
where ~w
þ
denotes the even-parity trial-space intensity on the boundary surface.

A.2. Odd-parity source condition

We next consider source boundary conditions for the odd-parity equation. The relationships that are used
to express w� in terms of w+ on a source boundary can also be used to express w+ in terms of w�. In particular,
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re-expressing Eqs. (A.8) and (A.10) for this task, we, respectively, get the relationships use them to define wþ
s in

Eq. (A.2) in terms of the trial-space representation for w�:
wþ
s ð~XÞ ¼ �~w

�ð~XÞ þ f ð~XÞ for ~X �~n < 0; ðA:13Þ
wþ

s ð~XÞ ¼ ~w
�ð~XÞ þ f ð~XÞ for ~X �~n > 0. ðA:14Þ
A.3. SAAI source conditions

There are several possible source boundary condition treatments for the SAAI equation. First, we derive a
treatment directly from those for the even-parity and odd-parity equations. In particular, summing Eqs.
(A.11) and (A.13), we obtain
wsð~XÞ ¼ �~wð~XÞ þ 2f ð~XÞ for ~X �~n < 0. ðA:15Þ

Summing Eqs. (A.12) and (A.14), we obtain
wsð~XÞ ¼ ~wð~XÞ for ~X �~n > 0. ðA:16Þ

We refer to these as the parity-equivalent source conditions because they make the solution of the SAAI equa-
tion with the standard discretization equivalent to the simultaneous solution of the even-parity and odd-parity
equations with the standard discretization and standard source boundary conditions. These boundary condi-
tions were originally derived for the SAAF neutron transport equation by Gesh and Adams [21]. Eq. (A.15) is
certainly of a non-intuitive nature. More physically intuitive boundary conditions exist, but they do not result
in parity equivalence.

In particular, the SAAI source conditions given in [2] are much more physically-intuitive than the parity-
equivalent conditions because ws is simply equal to f for the incoming directions:
wsð~XÞ ¼ f ð~XÞ for ~X �~n < 0; ðA:17Þ
wsð~XÞ ¼ ~wð~XÞ for ~X �~n > 0. ðA:18Þ
The non-intuitive nature of the parity-equivalent boundary conditions makes it unclear as to whether these
conditions are conservative. They are indeed conservative, but the radiation energy leakage from the system
must be calculated in a specific manner. In particular, the net leakage is first calculated in the usual way
~F �~n ¼
Z
4p

~wð~XÞ~X �~ndX; ðA:19Þ
where ~F �~n denotes the net leakage. The inflow, denoted by fin, is next calculated using f ð~XÞ rather than the
trial-space solution
fin ¼ �
Z
~X�~n<0

f ð~XÞ~X �~ndX. ðA:20Þ
Finally, the outflow, denoted by fout is calculated by adding the inflow to the net leakage
fout ¼
Z
4p

~wð~XÞ~X �~ndXþ
Z
~X�~n<0

f ð~XÞ~X �~ndX. ðA:21Þ
Note that if the incoming values of ~wð~XÞ are not equal to f ð~XÞ, the incoming values of ~w contribute to the
outflow. This is clearly non-physical. However, the contribution to the outflow from the inflow directions ap-
proaches zero as the mesh is refined.
A.4. Reflective conditions

In general, reflective boundary conditions are more difficult to implement than source conditions because
they are essential boundary conditions, i.e., the trial-space must be forced to exactly satisfy these conditions.
There are two caveats to this statement. First, in 1-D slab calculations, the reflective condition is a natural
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rather than essential condition. Second, one can implement a reflective condition for the SAAF equation that
is not essential, but it generates an asymmetric directional coupling. This is not a problem if the Sn equations
are solved using the standard Sn source iteration technique, because the asymmetry does not appear in the
coefficient matrices for the iteration equations. Our symmetric implementation of the reflective boundary con-
dition is essentially identical for the even-parity, odd-parity, and SAAI equations.

We do not consider reflective conditions on arbitrary surfaces or arbitrarily-oriented flat surfaces, but
rather only on flat surfaces that are parallel to a coordinate plane, i.e., parallel to the x�y, y�z, or x�z planes.
We refer to such surfaces as coordinate surfaces. This limitation is required for Sn calculations because stan-
dard Sn quadrature directions are symmetric only with respect to coordinate surfaces. This restriction is not
serious since reflective boundary conditions are usually imposed only to reduce the size of the computational
domain in problems with some degree of symmetry about one or more orthogonal planes. If such planes are
not parallel to coordinate surfaces, they can generally be made so via rotation of the coordinate axes.

A.4.1. Even-parity reflective condition

On a reflective surface, the angular intensity physically satisfies
wð~XÞ ¼ wð~X0
Þ for all ~X �~n < 0; ðA:22Þ
where ~X
0
is the mirror image of ~X relative to the reflective surface, i.e.,
~X �~n ¼ �~X
0 �~n ðA:23Þ
and
~X�~n ¼ ~X
0 �~n. ðA:24Þ
We next manipulate Eq. (A.22) to obtain relationships for the even-parity and odd-parity intensities on a
reflective surface. In particular, substituting from Eq. (A.6) into Eq.(A.22), we get
wþð~XÞ þ w�ð~XÞ ¼ wþð~X0Þ þ w�ð~X0Þ for all ~X �~n < 0. ðA:25Þ

Substituting �~X

0
for ~X in Eq. (A.25), we obtain
wþð�~X
0Þ þ w�ð�~X

0Þ ¼ wþð�~XÞ þ w�ð�~XÞ for all � ~X
0 �~n < 0. ðA:26Þ
Using Eqs. (7) and (8), it follows from Eq. (A.25) that
wþð~X0Þ � w�ð~XÞ ¼ wþð~XÞ � w�ð~XÞ for all ~X
0 �~n > 0. ðA:27Þ
By adding Eqs. (A.25) and (A.27), we find that
wþð~XÞ ¼ wþð~X0Þ for all ~X ðA:28Þ

and by subtracting Eq. (A.27) from Eq. (A.25), we find that
w�ð~XÞ ¼ w�ð~X
0
Þ for all ~X. ðA:29Þ
Eqs. (A.28) and (A.29) are the basis of reflective boundary treatments for both the even-parity and odd-parity
equations. However, we cannot proceed in analogy with the source treatments because Eqs. (A.28) and (A.29)
do not relate w+ and w� on a reflective boundary. Thus we cannot directly use these equations to define w�

s in
Eq. (A.1) in terms of the ~wþ. Nonetheless, we can use these equations together with algebraic manipulation of
the equations for wþð~XÞ and wþð~X

0
Þ to obtain new equations for wþð~XÞ and wþð~X

0
Þ that do not contain the

odd-parity intensity. In particular, if we average the equations for wþð~XÞ and wþð~X0Þ, it follows from Eqs.
(A.23) and (A.29) that the surface terms containing w�

s ð~XÞ and w�
s ð~X

0Þ will cancel, thereby eliminating these
odd-parity intensities from the resulting equation. We can then use Eq. (A.28) together with this average equa-
tion to obtain a new equation for wþð~XÞ and a new equation for wþð~X0Þ. However, in practice we must ensure
that these new equations are cast in such a way that there is no singularity or asymmetry associated with them.

To this end, we define the following implementation algorithm for the case of Sn angular discretization. Let
Ck,j denote the coefficient matrix element associated with unknown j in the equation for unknown k. Further,
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let i denote the index for wþð~XÞ and let i 0 denote the index for wþð~X0Þ. To implement the reflective boundary
conditions for wþð~XÞ and wþð~X

0
Þ:

1. Initially generate the equations for wþð~XÞ and wþð~X
0
Þ with the boundary surface term set to zero.

2. Next average the equations for wþð~XÞ and wþð~X0Þ
Cð1Þ
i;j ¼ Cð1Þ

i0;j ¼
1

2
Cð0Þ

i;j þ Cð0Þ
i0 ;j

h i
for all j; ðA:30Þ

where CðnÞ
i;j denotes the coefficient Ci,j after the nth algorithmic step. At this point, the matrix is singular be-

cause two rows are identical.
3. Remove the singularity by first adding the off-diagonal coefficient associated with wþð~X

0
Þ in the equation

for wþð~XÞ to the diagonal, then adding the off-diagonal coefficient associated with wþð~XÞ in the equation
for wþð~X0Þ to the diagonal, and then set the original off-diagonal coefficient to zero in both equations:
Cð2Þ
i;i ¼ Cð1Þ

i;i þ Cð1Þ
i;i0 ; ðA:31Þ

Cð2Þ
i0 ;i0 ¼ Cð1Þ

i0 ;i0 þ Cð1Þ
i0;i ; ðA:32Þ

Cð2Þ
i;i0 ¼ Cð2Þ

i0;i ¼ 0. ðA:33Þ
4. Restore symmetry to the system by averaging the off-diagonal coefficients associated with
wþð~XÞ and wþð~X0Þ in all equations other than those for wþð~XÞ and wþð~X0Þ
Cð3Þ
j;i ¼ Cð3Þ

j;i0 ¼
1

2
Cð2Þ

j;i þ Cð2Þ
j;i0

h i
for all j not equal to i or i0. ðA:34Þ
There are three complications that can arise with this process, and they can be dealt with as described
below:
1. Because the angular domain for the even-parity equation is half the unit sphere, ~X can be in the angular

domain when ~X
0
is not in the angular domain. In this case, the equation for wþð~XÞ should be averaged with

the equation for wþð�~X
0Þ. This follows for three reasons. First, �~X

0
will always be in the angular domain if

~X is not, second, wþð�~X
0
Þ ¼ wþð~X

0
Þ, and third, �~X

0
�~nw�ð�~X

0
Þ ¼ ~X

0
�~nw�ð~X

0
Þ.

2. A vertex can be shared by two reflective surfaces (a reflective edge vertex). In this case, one must average the
four equations associated with ~X, ~X

0
, ~X

00
, and ~X

000
, where ~X and ~X

0
are mirror images with respect to the

‘‘first’’ reflective surface (arbitrarily chosen), ~X
00
is the mirror image of ~X

0
with respect to the second reflec-

tive surface, and ~X
000
is both the mirror image of ~X

00
with respect to the first reflective surface and the mirror

image of ~X with respect to the second reflective surface.
3. A vertex can be shared by three reflective coordinate surfaces (a reflective corner vertex.) In this case, no

averaging is required because w�ð~XÞ is identically zero at a reflective corner for all ~X.

Various combinations of these complications can arise, e.g. two of the four intensities that need to be
averaged at a vertex shared by two reflective surfaces may not be in the trial-space. We do not explicitly
address these combinations. They are dealt with by appropriately combining the various procedures described
above.

Overall, this is very complex algorithm. Its implementation is facilitated by carrying out the process at the
element level when assembling the coefficient matrix rather than carrying it out after the coefficient matrix has
been assembled. Nonetheless, we consider the implementation of these boundary conditions to be sufficiently
onerous to discourage the use of reflective boundary conditions with the even-parity Sn equations.
A.4.2. Odd-parity reflective conditions

Implementation of reflective boundary conditions for the odd-parity equations with Sn angular discretiza-
tion is almost completely analogous to that for the even-parity equations. The only exception relates to the
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case where w�ð~XÞ is in the angular domain, but w�ð~X0Þ is not. In this case, �w�ð�~X
0Þ ¼ w�ð~XÞ, so the two

unknowns are not equal to each other, but rather equal in magnitude and opposite in sign. To eliminate
the surface leakage terms in the equations for these unknowns, their equations must be subtracted rather than
added.

A.4.3. SAAI parity-equivalent reflective conditions

The implementation of parity-equivalent reflective boundary conditions for the SAAI equation with Sn

angular discretization is completely analogous to those for the even-parity equation with the exception that
both ~X and ~X

0
are always in the angular domain. Thus, the parity-equivalent reflective boundary conditions

are a little less complicated for the SAAI equation with Sn angular discretization.

A.5. SAAI non-essential reflective condition

The implementation of non-essential non-symmetric reflective boundary conditions for the SAAI Sn equa-
tions is extremely easy. In particular, on a reflective surface, the surface intensity in Eq. (A.3), ws, is defined as
follows:
wsð~XÞ ¼ ~wð~X
0
Þ for ~X �~n < 0; ðA:35Þ

wsð~XÞ ¼ ~wð~XÞ for ~X �~n > 0. ðA:36Þ
Just as is the case for the first-order form of the transport equation, the incoming intensities depend upon the
outgoing intensities, but the outgoing intensities do not depend upon the incoming intensities. This is obvi-
ously a non-symmetric coupling. However, as previously discussed, such coupling entails no penalty provided
the standard Sn source iteration technique is used. In our opinion, the ease of implementing these reflective
boundary conditions gives the SAAI Sn equations a significant advantage relative to the even-parity and
odd-parity Sn equations.
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